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Abstract—This paper describes a method to separate a monaural
music signal into harmonic components e.g. a guitar and percussive
components e.g. a snare drum. Separation of these two components is a
useful preprocessing for many music information retrieval applications,
and in addition, it can be used as a new kind of music equalizer in
itself, which enables a music listener to adjust the ratio of the volume
of the guitar and the drum freely by themselves. Because of these
potential applications, there have been many attempts to develop such
a technique, especially in the last decade. However, some of the state-
of-the-art techniques have a drawback that they are based on costly
operations, such as the multiplications of large-sized matrix, Monte Carlo
method, etc., which may constitute barriers to the practical use on
some small computers such as smart phones. In this paper, an efficient
method that does not depend on these costly operations is described.
In formulating the methods, the authors basically assumed only the
“anisotropic smoothness” of music spectrogram, which can be one of
the minimalistic model that reflects the natures of these instruments.
To be specific, the authors just assumed that harmonic instruments are
smooth in time, while the percussive instruments are smooth in frequency
on a music spectrogram. In this paper, on the basis of the assumption,
source separation methods are formulated as optimization problems that
optimize the “anisotropic smoothness” under some conditions. Because
of the simplicity of the model, the derived algorithms are quite simple.
Experimental results show that the methods were effective compared to
a state-of-the-art technique, and the computation time was much shorter
than an existing method; specifically, it can process a three-minute song
in around 4 – 20 seconds on a laptop PC.

Index Terms—audio source separation, music signal processing, har-
monic instruments, percussion
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I. INTRODUCTION

THIS paper describes a signal separation technique that decom-
poses an audio music signal into two components: one is a

harmonic component such as a guitar, a piano, etc., and the other is
a percussive component such as a drum. This paper is an extended
version of our previous conference papers [1]–[5].

Music signals, especially commonly distributed popular musics,
are often composed of the two different types of musical instruments
mentioned. These two typical classes of instruments have very differ-
ent roles in music. For example, melodies and chords are often played
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by harmonic components, while a drum beats the tempo. Therefore,
when we consider the extraction of music information from music
signals, which is one of the major issues of the area of music
signal processing, we may naturally assume that rather the former is
useful in automatic melody transcription, chord recognition [6], key
detection, etc., while the latter is rather useful for automatic tempo
estimation [7]. Thus, separating music signals into these two classes
of instruments in advance has a significance as a preprocessing for
these applications. Indeed, in chord recognition tasks for example, the
undesired components, i.e., the percussive components, often act like
‘noise,’ and interferes with the algorithms’ ability to work effectively
which result in the poorer performance. In addition, such a technique
also has a potential applicability as a music application software, such
as a new kind of music player which enables listeners to control the
volumes of drum and harmonic sounds separately.

Considering the use of such a technique as a preprocessing and a
real-time application, computation efficiency is an important issue.
From this motivation, in our previous conference papers [1]–[5],
we have proposed an algorithm to separate harmonic and percus-
sive source in music, on the basis of the quite simple concept of
“anisotropic smoothness of spectrograms.” The key concept of this
method is that the directions of the smoothness of the spectrograms
of these two typical instruments are different. The spectrograms of
harmonic components, such as a guitar, are typically ‘smooth’ in
time, owing to their quasi-stationarity, while the spectrograms of
percussive components are typically ‘smooth’ in the frequency, owing
to their impulse-like nature. This concept was first described in [1]
in Japanese and in [3] in English, then we reformulated this idea as
a MAP estimation problem in [4]. Subsequently, the idea was further
extended to stereo signals by multiplying a spatial prior [8], and
many other possible formulations are discussed in [5]. In addition
to our studies, the concept was followed by some other groups’
works, including FitzGerald’s median filtering [9]. The applications
of HPSS-related techniques for music information retrieval tasks also
have been studied [10], including audio chord estimation [6], [11],
tempo estimation [7], rhythm map generation [12], [13], and audio
melody extraction [14]–[16].

One of the principal advantages of this approach is the simplicity,
which results in quite shorter computation time than existing methods
(shown in section VII), while the separation performance is almost
comparable to an existing method (shown in section VI). This
approach is also advantageous in following two points: (1) it is
an unsupervised method which requires no pre-training, and (2) it
does not require any prior knowledge on the input music signal (for
example, it does not need to know exactly what kind of instruments
are included in the song).

The main contribution of this paper is that we show the complete
descriptions of the concept, formulation (including some refinements
to the previous ones in [4], [5]), derivation of algorithms of HPSS, and
larger scale evaluations than ever. This paper is organized as follows.
In the rest of section I, related work and notations are described.

xxxx–xxxx c© 2014 IEEE
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The principal concept and general formulation of HPSS is described
in section II. Explicit formulations based on section II are described
in section III. The algorithms to solve the problems are described in
section IV. Section V describes examples of the SDR improvement of
music signals in the HPSS procedure. Section VI and VII describes
the performance evaluations of the proposed methods and relevant
harmonic/percussive separation algorithms. Section VIII concludes
the paper.

A. Related Work

Owing to its potential usefulness, many attempts have been made
to develop such methods that separate music signal into harmonic
components and percussive components in the music signal process-
ing area. In order to separate these components, we naturally need to
utilize some properties of percussive and harmonic instruments, or, at
least some features that are useful to discriminate these instruments
(such as a higher order statistics in [17], etc.) Indeed, there have been
plenty of signal features utilized in the series of the studies.

This section reviews the features of harmonic and percussive
instruments the state-of-the-art methods focused on, as well as the
way in which these features are utilized in the methods. We largely
classified the approaches of utilizing the features into following three
classes, and review them in order.

1) Detection of percussive (or harmonic, or both) sounds followed
by a signal synthesis based on the detected information.

2) Signal fragmentation using a signal decomposition technique,
followed by a classification of the fragments.

3) Development of a congregative source separation algorithms, in
which some harmonic/percussive discrimination mechanisms are
incorporated. (The proposed method is classified in this class)

1) Detection and synthesis e.g. [18]–[25], etc.: This approach
first detects specific instruments, typically percussions, and then
synthesize a signal based on the detected information (by apply-
ing time-frequency masking, for example). In these studies, many
features which are useful to discriminate percussive instruments
from harmonic instruments are used, such as phase spectra [18],
broadbandness of percussive spectra [22].

2) Fragmentation and Classification: Another approach is the
fragmentation and classification, which firstly separates a spectrogram
into many fragments, then unites some of these fragments using the
estimated labels by a classification algorithm such as the support
vector machine (SVM). One of the earliest methods that took this
approach was the work by Uhle et al. [17]. They utilized independent
subspace analysis (ISA) to decompose a signal. After decomposition,
it picks up drum components by a simple decision rule based on
the following five features: Percussiveness, Noise-likeness, Spectral
dissonance [26], Spectral flatness measure (SFM) [27], and Third
order cumulant. The first four criteria model percussive sounds, while
the last one does not necessarily model percussive nor harmonic
instruments, but is a common criterion in independent component
analysis (ICA) [28] and related techniques.

Some other works utilized non-negative matrix factorization
(NMF) [29], [30] in a decomposition stage. Helen and Virtanen [31]
applied NMF to this problem, in which NMF was followed by SVM.
They examined 15 features in all, including 8 spectral features such as
Mel-frequency Cepstral Coefficients (MFCC) and 7 temporal features
such as Periodicity [32], etc., and verified that some of these features
are especially useful in the discrimination. There are still other studies
which addressed the relevant approaches, such as the work by Paulus
and Virtanen [33], Moreau and Flexer [34], Schuller et al. [35],
Yoo et al. [36], and Kim et al. [37], [38].

3) Congregative Signal Decomposition Technique: The third ap-
proach considers to develop a novel signal decomposition technique
in which some harmonic/percussive discrimination mechanisms are
built in. That is, the third approach considers to formulate an
algorithm that separates and classifies music signals simultaneously,
by using the properties of harmonic and percussive sounds.

Specifically, these methods were formulated like as “a constrained
NMF,” which has another cost function that models the properties of
the instruments, in addition to the basic cost function of the standard
NMF. This approach is technically challenging, and many methods
have been proposed recently. The proposal method is most related to
this approach.

Although it did not necessarily address the harmonic and per-
cussive separation problem, an attempt to integrate some properties
of music signals into NMF was presented by Virtanen in [39]. In
this method, some additional constraint on the gain model, i.e., the
temporal structure of the spectrogram, is added. Specifically, temporal
continuity of the gain and sparseness of the gain were incorporated
in NMF. Among these, the temporal continuity is quite similar to our
temporal smoothness function which shall be described in this paper.
(A characteristic of our method is that it has another constraint on
percussion which is symmetric to the temporal continuity.)

NMF-based algorithms which principally focused on harmonic and
percussion separation have been addressed subsequently. One of the
studies of such kind is the work by Vincent et al. [40]. In this study,
the model of spectral bases is extended, based on some assumptions
such as spectra of harmonic component is narrowband, harmonic
instruments have integer overtones, and inharmonic components have
non-integer overtones, etc.

It has been pointed out that NMF is well compatible with
probabilistic inferences framework [42]. In this perspective, these
additional cost functions can be formulated as a prior distributions.
On the basis of this concept, many studies have been done in the
framework of Bayesian inference or that of MAP estimation. One of
the studies which explicitly mentioned the framework is the study
of Dikmen and Cemgil [43]. They modeled the prior distribution
of the decomposition matrix of NMF taking temporal (frequency)
smoothness of harmonic (percussive) spectrogram into account. In
specific, The prior distribution is modeled by gamma Markov chain,
a model of a sequence of positive values [44]. These kinds of distri-
bution is assumed also in another method which is based on tensor
factorization, proposed by FitzGerald et al. [45]. These assumptions
on harmonic and percussive instruments mentioned in [42], [43], [45]
are essentially quite similar to the assumptions of this paper, though
the way of formulation is different. (See e.g. Eq. (1), (2), etc.)

A typical drawback, however, of these methods is that they often
require much computation resource. For example, in [43], the estima-
tion procedure is based on Gibbs sampling, which is sometimes quite
costly. One of our motivations in this paper came from a question how
can these congregative approaches be simplified. In our observations,
what make these state-of-the-art techniques computationally costly
are (1) the multiplications of big matrices which appear in NMF
algorithms, and (2) the sampling from a probability density function
with rather complicated forms. On the basis of these motivations, we
formulated a problem that is not based on the NMF framework nor
any complicated probability density functions. Instead of them, we
simply formulated the problem as an optimization problems based
only on a simple assumption “anisotropic smoothness” of harmonic
and percussive spectrogram and some subsidiary constraints. As a
result, the derived algorithms were quite simpler, and they required
quite small computation cost. This paper gives the whole formulations
of the simple separation algorithms.



TACHIBANA et al.,: HPSS BASED ON ANISOTROPIC SMOOTHNESS OF SPECTROGRAMS 3

(a) (b) (c)
Fig. 1. Spectrograms of (a) a mixed music signal Y (extracted from a song “Another Dreamer – Dreams” in BASS-dB dataset [41]), (b) a harmonic
component H , in which it is observed that it is rather continuous in time than in frequency, and (c) a percussive component P , which is continuous in
frequency.

B. Notation

The notation in this paper is as follows. Given a discretized real-
valued signal x(t), where t denotes discrete time t ∈ Z, and let
X̂ = STFT(x(t)) = (X̂n,k) ∈ CN×K be a complex spectrogram
of the signal, which is derived by applying the short-time Fourier
transform (STFT) to x(t). The subscripts n, k ∈ Z denote the
indices of time and frequency respectively. A pair of n and k, i.e.,
(n, k) is referred to as “a time-frequency bin,” or simply “a bin.”
Clearly the spectrogram above is composed of N ×K bins, where
N is the number of time frames, and K is the number of bins in
a single frame. Note there is a relation between K and the size of
STFT analyzing frame of length L that K = L/2 + 1 when L is
even. The value of the time-frequency bins outside of this domain is
defined to be zero for convenience, i.e., X̂n,k = 0 for any (n, k) /∈
[0, N − 1]× [0,K − 1].

Unlike NMF-based methods, we do not particularly regard a spec-
trogram X̂ as a matrix in this paper. Instead, we regard it just a tuple
of N × K complex/real numbers, and define arithmetic operations
as element-wise operations. For example, XY := (Xn,kYn,k),
|Xγ |/2 := (|Xγ

n,k|/2), X ≥ 0
def⇔ ∀(n, k), Xn,k ≥ 0, etc.

Using these notations, the amplitude spectrogram is denoted as
|X̂| ∈ RN×K and the phase spectrogram is written as X̂/|X̂|.

In this paper, we often use γ-powered variables “xγ” instead
of “x” For example, (∂/∂(xγ))xmγ = (∂/∂y)ym = mym−1 =
mx(m−1)γ . We often use the expressions such as xγ ← f(xγ), which
are in principle equivalent to x← γ

√
f(xγ). These expressions mean

that we should evaluate y ← f(y) using a temporary variable y, and
evaluate x← γ

√
y only when the very x becomes needed.

We often omit some arguments of functions if evident. For exam-
ple, S(H,P ;w) is sometimes written as S for simplicity.

II. CONCEPT OF HPSS: ANISOTROPIC SMOOTHNESS OF

SPECTROGRAM

A. Concept of Anisotropic Smoothness of Spectrogram

An amplitude spectrogram Y = |Ŷ | ∈ RN×K of a typical
music signal y(t) is shown in Fig. 1 (a). We may see that the
spectrogram has a check pattern, composed of crossing horizontal
lines and vertical lines. The reason why a musical spectrogram has
such a pattern is that the music signals are typically composed of two
typical classes of instruments, i.e., the harmonic and the percussive.

It is likely that the horizontal (temporally-continuous) components
in Fig. 1 (a) are attributable to some instruments such as a guitar, a
piano, etc., noting that the amplitude spectrograms of these sounds are

likely to be temporally smooth as shown in Fig. 1 (b), because of their
quasi-stationarity. To be specific, let H ∈ RN×K be an amplitude
spectrogram of harmonic sounds, and we may assume that the value
of the spectrogram at a time-frequency bin (n, k), i.e. Hn,k, should
be nearly equal to those of the temporally adjacent bins (n± 1, k).
That is,

Hn,k ≈ Hn±1,k. (1)

Note, not entirely identical but essentially similar properties are
supposed on harmonic instruments in [18], [39], [42], [43], [45]–
[47], etc.

This assumption is generalized as follows,

Hn,k ≈ Hn±n′,k, (1 ≤ n′ ≤ N ′), (2)

where N ′ is the maximal distance we consider neighbour. The
value of N ′ is supposed to be from 1 to several dozen, from the
observations on the spectrogram Fig. 1 (b) in which it is shown
that each sound is typically sustained for 100 – 1000 [ms], which is
equivalent to the several dozens of the bins, if the temporal resolution
of STFT is around 10 [ms].

Similarly, it is likely that the vertical (continuous in frequency)
components are attributed to percussive instruments, noting that the
spectrogram of percussive instruments are likely to be smooth in
frequency as shown in Fig. 1 (c), because of their impulse-like nature.
To be specific, the spectrogram of a percussion P ∈ RN×K should
have following property similarly to (2),

Pn,k ≈ Pn,k±k′ , (1 ≤ k′ ≤ K′) (3)

where K′ is the maximal distance under consideration.
In summary, harmonic and percussive components are continuous

anisotropically. On the basis of the discussion above, we may expect
that applying an algorithm that separates a crossing check pattern
into horizontal and vertical components on spectrogram can separate
harmonic and percussive components of music signals. This is the
fundamental concept of the proposed methods.

B. Criteria on Anisotropic Smoothness

In order to go further from the qualitative discussion above into
quantitative discussions, let us define criteria to evaluate how strongly
(2) and (3) are satisfied.

We first define the quantitative criteria on the anisotropic smooth-
ness of a spectrogram around each bin (n, k). Although there could
be many variants of the way of measuring the “smoothness,” we
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simply defined the criteria as the sum of squared difference between
the bins under consideration as follows,

Stime(n, k,H
γ) :=

1

N ′

N′∑
n′=1

(Hγ
n,k −H

γ
n−n′,k)

2, (4)

Sfreq(n, k,P
γ) :=

1

K′

K′∑
k′=1

(P γn,k − P
γ
n,k−k′)

2, (5)

where the superscript γ is an exponential factor to suppress the effects
from loud components. Noting that γ ≈ 0.6 roughly approximates
human auditory systems in some conditions [48], it would be con-
siderable to set the value around 0.6.

When the condition (2) is satisfied, Stime(n, k,H
γ) should take a

small value. Similarly, the smoothness of P γ in frequency direction
around the bin (n, k) can be evaluated by (5). In summary,

(2) is satisfied ≈ Stime(n, k,H
γ) is small, (6)

(3) is satisfied ≈ Sfreq(n, k,P
γ) is small. (7)

Using these functions that indicate anisotropic smoothness around
a single bin, let us define a “total smoothness” functions, that indicate
the smoothness of the whole spectrogram. Specifically, we defined
them by simple summations of the values of N × K anisotropic
smoothness criteria as follows,

Stotal
time (H

γ) :=
∑
n

∑
k

Stime(n, k,H
γ) (8)

Stotal
freq (P γ) :=

∑
n

∑
k

Sfreq(n, k,P
γ). (9)

C. Validity of the Criteria

Let us verify the validity of the criteria (8) and (9), using real
instrumental sounds. The audio files we used for the evaluation were
excerpted from RWC-MDB-I-2001 [49] database. Fig. 2 shows the
values of Stotal

time (X
γ) defined by (8) and Stotal

freq (Xγ) defined by (9)
for each instrument, where Xγ is a spectrogram such as a piano,
a harpsichord, etc. It is shown that harmonic instruments make (8)
small, (9) large, and (8)� (9) is satisfied. To the contrary, percussive
instruments make (8) relatively large, and (9) relatively small. The
fact indicates that it is reasonable to use (8) and (9) as indicators to
measure the anisotropic smoothness of the spectrogram Xγ in time
and in frequency, respectively.

D. Smoothness Function and Abstract Formulation of Optimization
Problems

We finally define an integration of two criteria (8) and (9) as
follows,

S(Hγ ,P γ ;w) := Stotal
time (H

γ) + wStotal
freq (P γ), (10)

where w is a weighting constant. Hereafter, let us call S(Hγ ,P γ , w)
simply a smoothness function. Note the form of smoothness function
S is identical to a part of the objective functions of our early
studies [3]–[5] when N ′ = K′ = 1.

Given a spectrogram Y γ , and let us consider a thought experiment
to make the thus defined S as small as possible by classifying each
element Y γn,k into either Hγ or P γ , under the condition that we are
given information whether a bin Y γn,k is “harmonic predominant,”
“percussive predominant,” or “silent” for each bin. In this case, it
would be reasonable to expect that classifying harmonic-predominant
bins into Hγ and percussive-predominant bins into P γ results in
smaller S.
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time (X

γ) and Stotal
freq (Xγ). All

the values are normalized by the length and the averaged power of each clip.
The condition is as follows: γ = 0.5, N ′ = K′ = 5, L = 1024/16000 [s],
frame shift was L/4, the window was hanning window, and the sampling rate
was 16 kHz. Each instrumental sound was excerpted from RWC instrument
sound database [49]. The figure indicates that temporal smoothness function
Stotal
time (X

γ) defined by (8) are quite small for harmonic sounds (piano,
harpsichord, . . . , flute), while they are relatively large for percussive sounds
(castanet, . . . , timpani). To the contrary, the values of frequency smoothness
function Stotal

freq (Xγ) defined by (9) are quite large for harmonic sounds, while
they are rather small for percussive sounds.

To return from the digression, what we consider in this paper
is actually the reverse of this. That is, we are expecting that by
minimizing the smoothness function S(Hγ ,P γ ;w), most of har-
monic and percussive instruments may be classified into Hγ and
P γ , respectively. In other words, this paper considers the separation
of two components with the help of the values of S(Hγ ,P γ ;w),
expecting that the minimizer of S may roughly be the harmonic and
percussive spectrograms, respectively.

On the basis of the above idea, the source separation problem can
be interpreted as an optimization problem such as follows.

Problem (Pre-prototype):
minimize S(Hγ ,P γ ;w)

Note, however, this formulation does not work effectively. Indeed, the
simplistic idea of optimizing S just ends up with entirely meaningless
results, such as Hn,k = Pn,k = −1, etc. Thus we must avoid this
obvious inconvenience by rewriting the problem as follows taking
some additional constraint into account.

Problem (Prototype):
minimize S(Hγ ,P γ ;w) + additional cost

subject to some constraints

One of the most basic costs/constraints is the non-negativity of each
component, i.e.,

Hγ ≥ 0,P γ ≥ 0, (11)

because “amplitude” Hn,k cannot be negative, which implies the non-
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negativity of Hγ
n,k.

Another important cost/constraint is the reconstructivity: the sum
of separated spectrograms H and P should be almost identical to
the original spectrogram Y . In the next section, we shall describe the
explicit forms of this requirement, as well as the complete problem
settings.

III. FORMULATION OF HPSS BASED ON THE ANISOTROPIC

SMOOTHNESS

This section describes the explicit formulations of the optimization
problems that were outlined in the previous section. Specifically, we
shall describe three optimization problems. The difference among
these problems is how the requirement on reconstructivity, i.e. the
cost/constraint on the sum of separated spectrograms, is handled. The
following describes the details.

A. Formulation 1: Considering Reconstructivity as a Constraint

A natural way to lay a constraint on the sum is the restriction of the
feasible region. In specific, we may write the constraint as follows,

Hξ + P ξ = Y ξ, (12)

where ξ is an exponential factor, which should satisfy following
properties, along with γ:

1) With regard to ξ, any one of the following three assumptions
should be assumed, in order to make the condition (12) physi-
cally meaningful.

a) In order to assume ξ = 1, we should accept the assumption of
the additivity of the amplitude spectrograms. Note, it implies
the wave-domain additivity h(t) + p(t) = y(t), where h(t)
and p(t) are harmonic and percussive signals, respectively,
under the condition that Ĥ , P̂ , and Ŷ have the identical phase
spectrogram, i.e., Hn,ke

√
−1θ + Pn,ke

√
−1θ = Yn,ke

√
−1θ .

b) In order to assume ξ = 2, we should accept the assumption
of the additivity of the power spectrograms.

c) The values other than ξ = 1, 2 may also be acceptable, if we
assume that H and P rarely share the same bins, but they
are mostly exclusive, i.e.,

(Hn,k, Pn,k) = (Yn,k, 0) or (0, Yn,k) (13)

is satisfied in many bins. Note, this assumption is equivalent to
“there exists an ideal binary mask that separates the harmonic
and the percussive components almost perfectly.”

2) In order to suppress the effects of outstandingly loud compo-
nents, the spectrograms should be suppressed by an exponential
factor γ. The value should be less than 1, typically around 0.6
which is said to give a fair approximation of human auditory
systems.

3) Mathematical convenience requires ξ = γ or ξ = 2γ.

Considering these requirements for γ and ξ, it may be reasonable
setting ξ = 2γ, assuming γ ≈ 0.5. To summarize, the problem can be
written as a following constrained nonlinear programming problem,

Problem 1-A:
minimize S(Hγ ,P γ ;w)

subject to H2γ + P 2γ = Y 2γ ,

Hγ ≥ 0, P γ ≥ 0.

Note this setting is identical to “HM2” in [5] when N ′ = K′ = 1.
Another reasonable setting is ξ = γ ≈ 0.5, assuming 1)-c). In this

case the problem is written as follows.

Problem 1-B:
minimize S(Hγ ,P γ ;w)

subject to Hγ + P γ = Y γ ,

Hγ ≥ 0, P γ ≥ 0.

Explicit procedures to obtain approximate solutions to these opti-
mization problem shall be described in Section IV.

B. Formulation 2: Considering Reconstructivity as a Cost Function

Aside from Problems 1-A and 1-B, we may also consider another
approach, making some allowances for the difference between Hξ+
P ξ and Y ξ. In this subsection, instead of laying the strict constraint,
we consider to add another cost term on the difference between them
to the objective function, and derive an algorithm that minimizes the
thus obtained congregative objective function.

Although there are many possible distance measure between Hξ+
P ξ and Y ξ, we considered the generalized Kullback-Leibler (KL)
divergence, which is one of the basic statistical criterion that has been
used in many fields including NMF [29], [50] in order to measure the
“distance” between two distributions. Hereafter we just call it the KL
divergence. The KL divergence of Y ξ from Hξ +P ξ is defined by

DKL(Y
ξ‖Hξ + P ξ) :=

N−1∑
n=0

K−1∑
k=0

{
Y ξn,k ln

Y ξn,k

Hξ
n,k + P ξn,k

− Y ξn,k +Hξ
n,k + P ξn,k

}
,

where ξ should hold ξ = 2γ because of the requirement for the
homogeneity of the objective function (see Appendix of [16]). Using
the KL divergence, a relaxed optimization problem is defined as
follows,

Problem 2:
minimize S(Hγ ,P γ ;w)

+µDKL(Y
2γ ,H2γ + P 2γ)

=: U(Hγ ,P γ ;Y γ , w, µ)

subject to Hγ ≥ 0, P γ ≥ 0

where µ is a weight constant. The problem is identical to our
previous study [4] when N ′ = K′ = 1. An algorithm to solve this
optimization problem shall be shown in the next section.

IV. DERIVATION OF THE ALGORITHMS

In this section, we consider to derive algorithms that give practical
solutions to the three problems described above. The algorithms are
based on iterative updating, that gives a sequence of (Hγ ,P γ) which
decrease (to be precise, does not increase) the objective function S
or U , satisfying the constraints.

A. Optimization algorithm for Problem 1-A (HPSS 1-A)

Tentatively, let us ignore the non-negativity constraint for con-
venience. This constraint shall be worked out later. Besides, let us
concentrate on a single bin (n, k) of all the NK bins to make the
discussion simpler. Now we have a following subproblem.

minimize S(Hγ
n,k, P

γ
n,k|H

γ ,P γ ;w)

subject to H2γ
n,k + P 2γ

n,k = Y 2γ
n,k.

Let us solve the problem on the basis of the standard procedure of
the Lagrange multiplier method. The Lagrangian function is given by

L := S(Hγ
n,k, P

γ
n,k| . . . ) + λ(H2γ

n,k + P 2γ
n,k − Y

2γ
n,k), (14)
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where λ is a Lagrange multiplier. Solving the equations on the
extrema of L, i.e., ∂L/∂(Hγ

n,k) = ∂L/∂(P γn,k) = 0, the equations
on the stationary points are obtained as follows,

Hγ
n,k = (2 + λ)−1H

(n-mean)
n,k , P γn,k = (2w+ λ)−1P

(k-mean)
n,k (15)

where

H
(n-mean)
n,k :=

1

2N ′

N′∑
n′=1

(Hγ
n+n′,k +Hγ

n−n′,k), (16)

P
(k-mean)
n,k :=

1

2K′

K′∑
k′=1

(P γn,k+k′ + P γn,k−k′), (17)

which indicate the moving averages of the time-frequency bins around
(n, k), excluding (n, k) itself. By substituting Hγ

n,k and P γn,k in
∂L/∂λ = 0 by (15), a quartic equation on λ is derived as follows,(

H
(n-mean)
n,k

2 + λ

)2

+

(
P

(k-mean)
n,k

2w + λ

)2

= Y 2γ
n,k. (18)

This equation, however, is not easily solved practically for general w,
as it is a quartic equation on λ. Nevertheless, assuming that w = 1,
the equation becomes a quadratic equation on λ as follows,

(λ+ 2)2 =
1

Y 2γ
n,k

{
(H

(n-mean)
n,k )2 + (P

(k-mean)
n,k )2

}
. (19)

Using thus obtained λ, and noting that Hγ
n,k and P γn,k should be

positive, the equations on extrema are derived as follows1,

Hγ
n,k =

H
(n-mean)
n,k√

(H
(n-mean)
n,k )2 + (P

(k-mean)
n,k )2

Y γn,k, (20)

P γn,k =
P

(k-mean)
n,k√

(H
(n-mean)
n,k )2 + (P

(k-mean)
n,k )2

Y γn,k. (21)

We can use (20) and (21) as a tentative solution for a single time-
frequency bin (n, k). That is,

Hγ
n,k ← r.h.s. of (20), (22)

P γn,k ← r.h.s. of (21). (23)

This substitution decreases (precisely, does not increase) the objective
function S. Moreover, it is evident that applying the same as above
to all time-frequency bins will never increase S.

By summarizing the discussion above and filling in with details,
the whole procedure is written as follows.

1Note that we can obtain an algorithm which is identical to FitzGerald’s
median filtering [9], just by replacing ·-mean by ·-median, which is defined
by

H
(n-median)
n,k := median((Hn+n′,k)−N′≤n′≤N′ ),

etc. This fact intuitively implies that we can roughly interpret the FitzGerald’s
method as a technique that approximately minimizes an absolute-value-based
cost function S′ =

∑
n

∑
k

∑
n′
∣∣Hn,k −Hn+n′,k

∣∣+ · · · , noting that the
median m = median({xi}) minimizes

∑
i |xi −m| where {xi}i is a set

of samples. In light of the fact mentioned, we can consider a general “center
value” m, which is characterized as the minimizer of the “variance” induced
by a distance measure d(·, ·), i.e., m = argminµ

∑n
i=1 d(xi, µ)

2. These
centers are sometimes called “Fréchet mean” [51]. The means in this class
may also be exploited in the literature of HPSS in the future.

Fig. 3. An example of the result of Method 1-A. Number of Iteration was
I = 5, and the parameters are N ′ = K′ = 8. The left is harmonic and the
right is percussive. The input signal is Fig. 1(a), and the ground truths are
Fig. 1(b), (c)

Method 1-A (HPSS 1-A):
i. Given a complex spectrogram Ŷ ∈ CN×K , and take its

absolute value Y = |Ŷ | ∈ RN×K .
ii. Set initial values Hγ and P γ . We simply set them as
Hγ = P γ = Y γ/

√
2 in this paper.

iii. Update Hγ and P γ using (22) and (23).
iv. Iterate iii for I times.
v. Apply inverse STFT in order to obtain audible waveforms
h(t) and p(t) using H,P and phase spectrogram of Ŷ ,
i.e., x(t) = STFT−1[XŶ /Y ].

Note, despite the convexity2 of the objective function S, the
problem is not convex programming, because the equality constraints
H2γ
n,k+P

2γ
n,k = Y 2γ

n,k does not satisfy the requirement that the equation
constraints should be affine (first-degree equations). Therefore, just
decreasing the objective function does not necessarily result in a
global minimum, but the solution typically falls in a local minimum,
depending on the initial value. There are some meta-heuristics to
find a better solution in these kinds of optimization problems, such
as testing many initial values, applying genetic algorithms, etc.
Nevertheless, we avoided these rather costly operations that contradict
our original purpose of developing an efficient source separation
technique. Instead, we simply set the initial values as the input
spectrogram Y , as shown in (ii). It may not be necessarily the best
initial value, but it empirically performed well in our preliminary
experiments.

Fig. 3 shows an example of the result of Method 1-A. It is observed
that the vertical components in H and the horizontal components in
P are smoothed out, compared to the mixed signal, Fig. 1 (a).

B. Optimization algorithm for Problem 1-B (HPSS 1-B)

We may similarly derive the optimization procedure for Problem 1-
B. The updating formulae are written as follows3.

Hγ
n,k ← ρ(αn,k; 0, Y

γ
n,k) (24)

P γn,k ← ρ(βn,k; 0, Y
γ
n,k) (25)

where

αn,k =
1

2

(
Y γn,k +H

(n-mean)
n,k − P (k-mean)

n,k

)
(26)

βn,k =
1

2

(
Y γn,k −H

(n-mean)
n,k + P

(k-mean)
n,k

)
(27)

2It is easily verified that Hessian of S w.r.t. Hγ
n,k and P γn,k is positive

semi-definite.
3We assumed w = 1 for convenience, but we may also easily derive the

updating formula in general w > 0.
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ρ(x; l, u) =


l if x < l

x if l ≤ x ≤ u

u if u < x.

(28)

This substitution decreases (precisely, does not increase) the objective
function S by the same reason above. Moreover, Problem 1-B is a
convex programming, which implies that a local optimum is always
a global optimum.

C. Optimization algorithm for Problem 2 (HPSS 2)

Similarly to Problem 1-A and 1-B, we consider this problem
element by element. Let us consider the derivatives of the objective
function U w.r.t. a variable under consideration. The solution that
minimizes U(Hγ

n,k|H
γ ,P ,Y ) w.r.t. the variable Hγ

n,k should hold
∂U/∂(Hγ

n,k) = 0. Therefore, applying the updating formulae that are
derived by solving this equation does not increase U . It is not difficult
to solve this equation theoretically, but inconveniently, it result in
cubic equations on Hγ

n,k, which are costly to solve. We then consider
to simplify the problem, using the following trick, which reduces
the degree of the problem to quadratic. The idea of the following
discussion is based on the techniques that were used in some other
studies such as [52]. Note that the Appendix of [13] also describes
a similar discussion.

What is causing the cubic equation is the addition in the denomina-
tor of ln{Y 2γ

n,k/(H
2γ
n,k +P 2γ

n,k)}, the first term of the KL divergence.
In order to remove the inconvenience, we factorize the KL divergence
into two KL divergences, using a parameter θn,k, (0 ≤ θn,k ≤ 1) as
follows,

DKL(Y
2γ‖H2γ + P 2γ) ≤
DKL(θY

2γ‖H2γ) +DKL((1− θ)Y 2γ‖P 2γ). (29)

This inequality is easily proved using the following inequality,

− ln(x+ y) ≤ −θ ln x
θ
− (1− θ) ln y

1− θ , (30)

where x, y > 0, 0 < θ < 1. The equality of (29) is satisfied only
when

θn,k =
H2γ
n,k

H2γ
n,k + P 2γ

n,k

=: θ?n,k. (31)

The inequality (29) yields the following inequality,

U = S(Hγ ,P γ ;w) + µDKL(Y
2γ‖H2γ + P 2γ)

≤ S(Hγ ,P γ ;w)

+µ{DKL(θY
2γ‖H2γ) +DKL((1− θ)Y 2γ‖P 2γ)}

=: U+(Hγ ,P γ ,θ;Y γ , w, µ), (32)

where U+ is an auxiliary function that gives an upper bound of U .
From here, we tentatively consider to derive a sequence that

decreases U+ instead of U . The original purpose to obtain a
sequence that decreases U shall be achieved in the next paragraph.
The partial derivative of the auxiliary function ∂U+/∂(Hγ

n,k) =

∂U+/∂(P γn,k) = 0, conveniently results in the following quadratic
equations,

a1(H
γ
n,k)

2 − 2b1H
γ
n,k − c1 = 0, (33)

a2(P
γ
n,k)

2 − 2b2P
γ
n,k − c2 = 0, (34)

where

a1 = 2 + µ, b1 = H
(n-mean)
n,k , c1 = µθn,kY

2γ
n,k,

a2 = 2 + µ′, b2 = P
(k-mean)
n,k , c2 = µ′(1− θn,k)Y 2γ

n,k,

µ′ = w−1µ.

Solving the quadratic equations on Hγ
n,k and P γn,k, noting that the

solutions should be non-negative as well as the minimum of U+, the
following updating formulae are obtained4,

Hγ
n,k ←

b1 +
√
b21 + a1c1

a1
, (35)

P γn,k ←
b2 +

√
b22 + a2c2

a2
. (36)

In addition to (35) and (36), we can consider the minimization of U+

w.r.t. θn,k. Clearly the θn,k that makes U+ minimal is none other
than θ?n,k in (31), because

U+(θn,k = θ?n,k) = U ≤ U+(θn,k). (37)

(Note all variables except θn,k are fixed here, and U is independent of
θn,k.) Therefore, substituting θn,k by the r.h.s of (31) also decreases
(does not increase) U+.

In the updating procedure (35), (36) and (31), the auxiliary function
U+ does not increase. In addition, noting that U+ = U is satisfied
just after updating θn,k, it is verified that U also does not increase
in the procedure.

By summarizing the discussion above and filling in with details,
the whole procedure is written as follows.

Method 2 (HPSS 2):
i. Given a complex spectrogram Ŷ , and take Y = |Ŷ |

ii. Set initial values to Hγ = P γ = Y γ/
√
2, similarly to

HPSS 1-A.
iii. Update Hγ ,P γ and θ using (35), (36) and (31).
iv. Iterate iii for I times.
v. Apply some postprocessings to H and P . We applied

Wiener mask in this paper.
vi. Apply inverse STFT in order to obtain h(t) and p(t)

similarly to Problem 1.

Since we did not lay strict constraints on the distance betweenH+
P and Y , the sum of separated signals are sometimes too distant from
the original spectrogram. Therefore, we heuristically applied Wiener
masking as a postprocessing after the iterations to modify these errors
(v in the above procedure). Nevertheless, the postprocessing is not
altogether ad hoc in a sense that the updating equations approach
asymptotically to Wiener masking when µ → ∞. If we interpreted
µ to be a penalty factor, the postprocessing can be understood as the
limit case of the penalty function method.

V. DEPENDENCIES OF PERFORMANCE ON M := N ′ = K′

In this section, we specify the value of N ′ and K′ in S, which
are defined in around equations (2), (3) as the maximal distances
on spectrogram that we consider neighbour in temporal direction
(N ′) and frequency direction (K′), respectively. We consider the
case N ′ = K′ =: M for simplicity, though N ′ and M ′ can be
tuned independently if needed.

A. Evaluation of Computation Time of Single Update

We first evaluated the computation time of applying the updating
formulae of HPSS once. We used a 16 kHz sampled monaural
audio signal of length 20 [s] as a sample data. The frame length
was L = 1024/16000 [s], and the frame shift was L/4. The
computer we used in the experiments was a laptop workstation DELL
PRECISION M4500, Intel R©CoreTMi7 CPU Q 740 @ 1.73GHz, and
the OS was Linux on the VMware. In evaluating the computation

4Note these equations are identical to our previous studies [4], when w =
1, µ = 2σ2

H = 2σ2
P, N

′ = K′ = 1.
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Fig. 4. Relation to computation time (log scale) and SDR (averaged value of 6 songs in MASS database [53]) of the output Harmonic and Percussive
signals, obtained by each HPSS method. (a), (b) HPSS 1-A, (c), (d) HPSS 1-B, and (e), (f) HPSS 2. M denotes M := N ′ = K′. Each point indicates the
ending time of each iteration. Note computation time was not directly evaluated, but calculated from the results of Section V-A (Table I) using (38), i.e., the
computation time indicated in the figure is for the 16-kHz 20-second music signals.

TABLE I
COMPUTATION TIME OF APPLYING UPDATING FORMULAE TO A 16-KHZ
20-SECOND INPUT SIGNAL ONCE, Tsingle update 20[s](M), ESTIMATED

BY AVERAGING 100 TIMES ITERATIONS. UNIT: [ms].

M(:= N ′ = K′)
Method 1 2 3 4 5 8 10 16

HPSS 1-A 28.5 29.5 39.1 36.0 41.5 40.8 48.5 57.3
HPSS 1-B 12.1 12.1 22.3 15.3 27.7 23.2 28.7 37.9
HPSS 2 41.7 43.1 51.3 50.4 54.9 55.3 60.5 66.8

time, we applied the updating formulae 100 times, instead of applying
them once, and we divided the measured computation time by
100. Hereafter we shall denote the obtained computation time as
Tsingle update 20[s](M).

Table I shows the computation time of each HPSS algorithm’s
single update Tsingle update 20[s](M), for M = 1, 2, . . . , 16. It is
observed that the computation time of each update is not proportional
to M , but it is much faster. This is partly because of the reason that
M affects only the computation cost of H(n-mean)

n,k and P
(k-mean)
n,k ,

and other operations such as the square root, which are much more
costly than computation of H(n-mean)

n,k , are independent of M . We
may also observe in the table that the computation time of the case
M = 4 is faster than M = 3, which contradict the fact that the
calculation amount of the single update of HPSS is O(NK × (M +
const)). Nevertheless, this reverse phenomenon may not be an error,
but is possibly attributable to the lower-level reasons of computer
architecture, etc.

B. Examples of SDR improvement in HPSS updating

We conducted an experiment to see the relation between compu-
tation time and SDR of the output signal for each parameter, namely
M := N ′ = K′, in order to decide M and the number of iteration
I .

The data we used here were the 6 songs in the MASS database [53].

The length of each song was around 10 [s], and the sampling rate
was 16 kHz. We mixed them in 5 dB (Harmonic to Percussive ratio).

Figure 4 shows the result: the SDR [54] curves of the harmonic and
percussive components for each M . The SDR indicate the averaged
values of those of the 6 songs. The computation time was not
measured directly, but was estimated by the following formula.

Computation Time(I,M) = Tsingle update 20[s] × I (38)

That is, it should be noted that the computation time displayed in
the figures indicate the time which will be required to process a 20-
second 16-kHz music signal.

We may observe that M around 2 to 5 improve SDR faster than
the others. Updating too much do not necessarily result in the better
separation performance, which may be because H and P “overfit”
to our too simple model. It is also observed that too large M result
in poorer performance in most cases.

From these figures we may decide which M and iteration number
is the best in terms of SDR. Considering the trade-off between the
sound quality (SDR) and computation time, it would be reasonable to
set M = N ′ = K′ and I as the values (a) and (b) in Table II, III, and
IV; the values (a) emphasized rather on the separation performance,
and the values (b) on the efficiency. Of course, we may also consider
other values for specific applications, but we only consider the two
representatives for simplicity in this paper.

VI. COMPARATIVE EVALUATIONS OF PROPOSED AND EXISTING

METHODS USING PROFESSIONALLY-CREATED MUSIC SIGNALS

A. Parameter Setting of HPSS 1-A, 1-B, and 2

The parameters are shown in Table II, III, IV. We considered
two parameter sets (a) and (b) for each method. The value of w
was decided to evenly weight the cost on harmonic and percussive
components. The value of µ was empirically decided, taking our
previous studies into account. N ′ and M ′ are decided on the basis
of the results of the previous section.
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TABLE II
PARAMETER SETTINGS OF HPSS 1-A

Value (a) Value (b)
Emphasis on SDR time

Range M = N ′ = K′ 4 2
Number of iteration I 10 2

Exponential factor γ 0.5 0.5

Frame length of STFT L 1024 (64 [ms]) 1024 (64 [ms])
Frame shift of STFT s 256 (16 [ms]) 256 (16 [ms])

Window Function hanning hanning

TABLE III
PARAMETER SETTINGS OF HPSS 1-B

Value (a) Value (b)
Emphasis on SDR time

Range M = N ′ = K′ 4 2

Number of iteration I 10 2
Exponential factor γ 0.5 0.5

Frame length of STFT L 1024 (64 [ms]) 1024 (64 [ms])
Frame shift of STFT s 256 (16 [ms]) 256 (16 [ms])

Window Function hanning hanning

TABLE IV
PARAMETER SETTINGS OF HPSS 2 (THE PARAMETERS w, µ AND γ ARE

BASICALLY BASED ON [4].)

Value (a) Value (b)
Emphasis on SDR time

Range M = N ′ = K′ 1 4

Number of iteration I 40 5
Weighting constant w 1 1

Weighting constant µ 0.1 0.1
Exponential factor γ 1 1

Frame length of STFT L 1024 (64 [ms]) 1024 (64 [ms])
Frame shift of STFT s 256 (16 [ms]) 256 (16 [ms])

Window Function hanning hanning
Post processing Wiener mask Wiener mask

B. Comparative Methods

The methods we compared to were as follows. One was the latest
version (release 1.2) of OpenBliSSART [55], [56]. OpenBliSSART is
an NMF-based general framework of audio source separation, which
is designed with an emphasis on the efficiency of computation for
the sake of the practical use. The parameters of OpenBliSSART was
chosen on the basis of their recommendations described in the user’s
manual and demo files. Specifically, the following commands were
used,

(a) septool -v -c30 -l9 input.wav
(b) septool -v -c50 -l9 input.wav

where -c30 and -c50 represent that the number of NMF bases is
(a) 30 and (b) 50. -l9 represents the ID of training set, and ID 9 is
the one for drum/harmonic separation. -v is a technical option not
to overwrite the database of OpenBliSSART. The parameters of this
method is shown in Table VI.

The other method was median-based harmonic/percussive sound
separation proposed by FitzGerald [9], which is another extension of
our previous conference paper [4]. The parameters of this method
are shown in Table V. The parameter (a) is very similar to the one
described in their original paper [9], but not identical. In the original
paper [9], the frame length was 92.8 [ms] = 4096/44100 [s], and the
frame shift was its quarter. The difference comes from the difference
of sampling rate. The parameter (b) is a referential one that may be
faster than (a).

TABLE V
PARAMETER SETTINGS OF MEDIAN-FILTERING-BASED METHOD [9].

Parameter Value (a) Value (b)
Range of median M 8 4

Frame length of STFT L 1024 (64 [ms]) 1024 (64 [ms])
Frame shift of STFT s 256 (16 [ms]) 256 (16 [ms])

Window Function hanning hanning
Post processing Wiener mask Wiener mask

TABLE VI
PARAMETER SETTINGS OF OPENBLISSART [55]. FOR THE DETAILS OF

EACH PARAMETER, SEE THE USERS’ MANUAL.

Parameter Value (a) Value (b)
Number of NMF bases 30 50

Number of NMF Iteration 100 (default) 100
Window size 60 [ms] (default) 60 [ms]

Window overlap 30 [ms] (default) 30 [ms]
Initialization Gaussian (default) Gaussian

Window overlap 30 [ms] (default) 30 [ms]
Iteration 100 (default) 100
Epsilon 0 (default) 0

Preenphasis 0 (default) 0
Window function of STFT sine (default) sine

Volatile True (default) True
Reduce mids False (default) False
Remove DC False (default) False

Zero-Padding False (default) False

C. Dataset and Evaluation Criteria

The music signals that we used in experiment were excerpted from
the following datasets:

(i) 6 pieces from the MASS database [53]. All of them are
monaural, sampled at 16 kHz, and ≈ 10 [s] of length.

(ii) 8 of 11 songs from the QUASI (QUaero Audio SIgnals)
dataset [57]–[59] excluding “Emily Hurst – Parting friends”
which does not contain percussion, and two songs “Fort Minor
– Remember the name” and “Vieux Farka Touré – Ana” that
also appeared in MASS. The dataset is originally composed of
separately recorded instruments and voices. We mixed them (to
be specific, simply added the tracks) and trimmed 20 [s] from
each song by ourselves.

(iii) 11 of 20 songs from the BASS-dB [41] database. We first
removed 5 songs which do not suit for our purpose here. We
then removed 4 of 15 songs which also appeared in QUASI
dataset. Each song consists of separately recorded instruments
and voices. In experiment we similarly mixed them and trimmed
20 [s] from each song by ourselves.

Thus we obtained 25 clips of length 10–20 [s], 6 of which were used
to decide the parameters.

In addition, we applied some simple effectors to the signals, using
a software “SoX” (Sound eXchange) [60] version 14.3.2. The effects
we applied are following.

Effects Commands
1) dry (no effect) (apply nothing)
2) slow (tempo ×0.8) sox $in $out tempo 0.8
3) fast (tempo ×1.2) sox $in $out tempo 1.2
4) overdrive sox $in $out overdrive
5) phaser sox $in $out phaser
6) reverb sox $in $out reverb
7) flanger sox $in $out flanger

We applied each effects to both harmonic and percussive components
separately, and mixed them later. Thus we obtained 25 × 7 clips of
length ≈ 8–25 [s].

In experiment, we mixed harmonic and percussive components
in 5 dB (harmonic to percussive ratio). (Note, in real-world music,
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harmonic components are a little louder than percussive component
in many cases.)

For evaluation criteria, we used SDR, SIR and SAR [54]5, which
are commonly used in many source separation tasks. We evaluated
the values of both separated H and P components. We considered
the processed signals as the “ground truth” instead of the original
“dry” ones, when evaluating the performances in the cases of 2)–7).

D. Results and Discussions

Fig. 5 shows SDR, SIR, and SAR of the separated harmonic and
percussive signals. In Fig. 5 (a), (b) and (c), it is observed that the
HPSS algorithms outperform, or if not, perform almost comparably
to the others in terms of SDR and SIR, on average, while Fig. 5
(d) shows that HPSS methods are not as effective as OpenBliSSART
in terms of the SIR of percussive components. Fig. 5 (e) and (f)
show the SAR of the resultant signals. HPSS 1-A and HPSS 2 (b)
outperformed the NMF-based method in terms of SAR of harmonic
components, and all the HPSS methods outperformed the NMF-based
method in terms of SAR of percussive components, on average.

Fig. 6 shows the results of the cases of processed music signals.
In all, it is observed that the shapes of the distributions are not
much different from the case of Fig. 5. This fact implies that the
performances of the algorithms are rather unaffected by these 6
effects (tempo conversion, phaser, etc.) on average. In other words,
the algorithms can pass for many kinds of distorted music signals
without changing the parameters drastically, although there may still
be a room of tuning the parameters quite elaborately.

Qualitatively, the percussive components output by HPSS meth-
ods and the FitzGerald’s median often contain many “harmonic”
components, too. In other words, these methods “discreetly” erase
the harmonic components from P . Typical “harmonic” components
found in the P ’s were, the attacks of the piano and the guitar, and
the consonants in the singing voice, etc. (Note we discussed in our
previous paper [16] that the vocal components (including vowels)
are classified into percussive components when L is large, because
of the fluctuation of the singing voice.) To the contrary, the percussive
components of the OpenBliSSART typically contain few harmonic
components, which may be a reason for the rather high SIR.

Generally, the results of the HPSS * (a) sound more clearly than
those of the HPSS * (b) for the authors’ ears. The results of HPSS
1-A, 1-B, and 2, have minor differences, though it is not necessarily
easy to distinguish them by the ears. For the authors’ ears, the results
of 1-B (a) tend to sound better than the others, though it depends on
the cases.

VII. EVALUATION OF COMPUTATION TIME

A. Experimental Condition

Practically, the computation cost is an important issue to use
a technique in the real world. In this section, we compared the
computational efficiency of each method. The parameter of each
method was the same as the previous section.

In median filtering, we simply applied a naive bin-wise approach;
we first applied a sort algorithm around each bin, and picked the

5We basically ran BSS EVAL 3.0 [54] (written in MATLAB) on GNU
Octave 3.2.3. Given n sources and n estimates, BSS EVAL automatically
identifies the best permutation of the correspondence between sources and
estimates from n! possible permutations on the basis of SIR before the
evaluation. However, we deleted the permutation estimation subroutine from
the original BSS EVAL in this experiment, because the source separation
techniques are supposed not only to separate a signal but also to label their
output signals either ‘harmonic’ or ‘percussive’ in this task, and therefore,
there is no ambiguity of permutation.
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Fig. 5. Dotplot of (a) SDR of harmonic components for 25
songs without effects, (b) SDR of percussive components, (c) SIR of
harmonic components, (d) SIR of percussive components, (e) SAR of
harmonic components, (f) SAR of percussive components. Each dot
indicates a song. “HPSS *” are the proposed methods. “Median” in-
dicates the method proposed by FitzGerald [9]. “OpenBlis.” indicates
OpenBliSSART [55], [56].

center up6. The sort algorithm was std::sort in C++ standard

6Robertson et al. [61] proposed a more efficient median filtering algorithm
than the naive bin-wise median; the method was approximately 3 times faster
than the bin-wise median in their settings. Therefore, the digits in Tables VII,
VIII may be multiplied by 1/3, if the method is used. However, the naive bin-
wise median still has an advantage of the parallelism; i.e., it can be achieved
by a team of independently-working N × K agents, each of which is only
responsible for the calculation of the median around its own bin. In this case,
if there are n cores, the computation time may roughly be 1/n times of the
digits shown in Table VII, VIII. This is basically the same for the HPSS
algorithms. It depends on the computer architecture which algorithm to use.
In this paper we used the naive one for the simplicity of the implementation,
though n = 1 in our experiment.
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Fig. 6. Dotplot of (a) SDR of harmonic components for 25 songs
× 6 effects, (b) SDR of percussive components, (c) SIR of harmonic
components, (d) SIR of percussive components, (e) SAR of harmonic
components, (f) SAR of percussive components.

library.
All of our methods and FitzGedald’s median filtering were im-

plemented in C++ in a same framework by the authors. The type
of all the variables were double (double floating point number.) In
discrete Fourier transform, we used FFTW3 [62], which is one of the
standards. We compiled all the programs using the GNU C++ Com-
piler 4.6.3 (g++), with the optimization option -O3. The computer
we used for evaluation was the same laptop workstation (DELL
PRECISION M4500). Although the CPU has 4 cores, we used only
a single core for calculation.

B. Results and Discussion

Table VII shows the computation time and the real time factor
(RTF). It shows that the proposed methods require quite a short

TABLE VII
TOTAL COMPUTATION TIME OF EACH METHOD TO PROCESS 16-KHZ
SAMPLED MONAURAL MUSIC SIGNALS OF LENGTH 1 MINUTE AND 3

MINUTES. THE DIGITS INCLUDE THE COMPUTATION TIME OF STFT,
WIENER MASKING, INVERSE STFT, AND I/O.

60-second song 180-second song
Method Time RTF Time RTF

HPSS 1-A (a) 2.46 [s] 4.1×10−2 7.5 [s] 4.2×10−2

HPSS 1-A (b) 1.44 [s] 2.4×10−2 4.2 [s] 2.3×10−2

HPSS 1-B (a) 1.77 [s] 3.0×10−2 5.2 [s] 2.9×10−2

HPSS 1-B (b) 1.12 [s] 1.9×10−2 3.9 [s] 2.2×10−2

HPSS 2 (a) 7.45 [s] 12.4×10−2 22.4 [s] 12.4×10−2

HPSS 2 (b) 2.61 [s] 4.4×10−2 7.8 [s] 4.3×10−2

Median (a) 3.48 [s] 5.8×10−2 10.3 [s] 5.7×10−2

Median (b) 2.68 [s] 4.5×10−2 8.7 [s] 4.8×10−2

OpenBlis. (a) 13.0 [s] 22 ×10−2 37 [s] 21 ×10−2

OpenBlis. (b) 18.5 [s] 31 ×10−2 54 [s] 30 ×10−2

TABLE VIII
COMPUTATION TIME OF EACH METHOD TO PROCESS THE SONGS,

EXCLUDING SUBSIDIARY PROCESSING SUCH AS I/O. THAT IS, THE
DIGITS BELOW ARE ONLY ON EXECUTING THE CORE ALGORITHMS, I.E.,
UPDATING FORMULAE OF HPSS, APPLYING MEDIAN FILTER, AND NMF.

SEE ALSO THE FOOTNOTE 7.

60-second song 180-second song
Method Time RTF Time RTF

HPSS 1-A (a) 1.28 [s] 2.1 ×10−2 3.9 [s] 2.1 ×10−2

HPSS 1-A (b) .25 [s] .42×10−2 .67 [s] .37×10−2

HPSS 1-B (a) .58 [s] .97×10−2 1.7 [s] .94×10−2

HPSS 1-B (b) .11 [s] .18×10−2 .36 [s] .20×10−2

HPSS 2 (a) 5.95 [s] 9.9 ×10−2 17.7 [s] 9.8 ×10−2

HPSS 2 (b) 1.10 [s] 1.8 ×10−2 3.2 [s] 1.8 ×10−2

Median (a) 1.44 [s] 2.4 ×10−2 4.3 [s] 2.4 ×10−2

Median (b) .61 [s] 1.0 ×10−2 1.9 [s] 1.1 ×10−2

OpenBlis. (a) 11.8 [s]7 33 [s]7

OpenBlis. (b) 17.3 [s]7 50 [s]7

computation time. HPSS 1-B (b) was the fastest of all, and it
processed a three-minute song in 4 [s]. These digits indicate that
the methods can process the data in real time. (An implementation
of real-time HPSS is described in [4]. This is based on performing
a sliding analysis on a randomly-accessible queue.)

Moreover, considering the computation time of the core of the
HPSS, i.e., the HPSS updating formulae, excluding the subsidiary
processing such as STFT, Wiener masking, inverse STFT, I/O etc.,
the HPSS techniques demonstrate outstanding efficiency. It is shown
in Table VIII. Comparing the digits shown in Table VII and VIII,
we may find that the computation cost of the core HPSS (updating
formula) is much less than, or comparable to, the other subsidiary
processing. For example, HPSS 1-A (b) requires 4.2 [s] to process
a 3-minute song, but only 0.67 [s] of the whole processing time is
attributable to the HPSS updating formulae, while the other 3.5 [s] is
attributable to the subsidiary processing such as STFT and I/O. This
fact also supports the efficiency of HPSS.

When compared to OpenBliSSART, which is a representative of
NMF-based methods, the efficiency is especially outstanding. In
specific, comparing HPSS 1-B (b) (0.36 [s]) with OpenBliSSART (b)
(≈ 50 [s]7), HPSS may be more than 100 times faster than Open-
BliSSART, excluding the subsidiary processing mentioned above.
This low computation cost is an advantage of the proposed method
compared to other existing methods.
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VIII. FINAL REMARKS

A. Summary and Comments

In this paper, we described harmonic/percussive sound separation
algorithms, which are based on the anisotropic smoothness of audio
spectrograms: that the harmonic component is horizontally smooth
and the percussive component is vertically smooth. We showed that
the assumption is reasonable using real instrumental sounds, and
formulated the problem as an optimization problem to minimize
a “smoothness function” which is defined on the basis of the
assumption. We specifically formulated the problems in three ways.
The difference between them depends on how a requirement for
the summation of the separated signals is formulated. Experimental
evaluation showed that the performance of these HPSS techniques are
higher or comparable to one of the existing methods that is based on
NMF, in terms of SxR. In addition, the computation time was much
less than it.

Putting all the assumptions in formulation, the derivation proce-
dures and the experimental results together, the characteristics of the
proposed three methods may be summarized as follows.

• HPSS 1-A has an advantage that the summation of the separated
signals h(t), p(t) is always identical to the input signal when
γ = 0.5, except tiny numerical errors. The form of the updating
formula is quite similar to FitzGerald’s median filter, which was
discussed in the footnote 1.

• HPSS 1-B, especially the parameter set (b), is the fastest of
all. It is guaranteed that the updating iteration always converge
to a global optimum, but the summation of h(t) and p(t) is
not necessarily identical to the input signal because (13) is
not necessarily satisfied in the real-world music. According to
our experiments, this method with the parameter set (a) may
be the most recommendable HPSS, in terms of the trade-off
between the SDR and the computation time, though it may not
be necessarily always the best.

• HPSS 2 typically requires more computation time than the
others, while it is still faster than the NMF (OpenBliSSART).
The method achieves a little higher SAR than the others.

B. Future Work

Considering one of the purposes of the HPSS methods to use
them as a preprocessor for MIR tasks, an area for future work is the
investigation of whether the methods really improve the performance
of the applications e.g. chord estimation and tempo estimation, which
have been partly verified in e.g. [6], [7]. Future works will include
this issue.

Another topic for future is on the choice of time-frequency
distribution. This paper considered only the STFT as a time-frequency
representation of signals, partly because of its efficiency, as well as
the ease of inverse transformation. However, other time-frequency
distribution such as the continuous wavelet transform (CWT) and the
constant Q transform (CQT) with chromatic frequency resolution,
etc., may also be used similarly. In particular, in some MIR applica-
tions, the use of a CQT may be more advantageous than an STFT.

7The computation time of the OpenBliSSART excluding I/O, STFT, etc.,
shown in Table VIII, were not directly measured but estimated just by
subtracting 1.2 [s] (60-second song) and 3.5 [s] (3-minute song) from the
total computation time shown in Table VII, just for reference. The values
1.2 [s] and 3.5 [s] above were estimated by the cases of HPSS, since the
computation time of I/O, STFT, etc., would be a constant regardless of the
source separation algorithms. The reason the authors did not measure the core
computation time of OpenBliSSART was that the authors did not have enough
knowledge on the details of the implementation of the OpenBliSSART, which
was required to embed a timer inside of the source codes.

The use of such time-frequency distributions other than the STFT
could be a topic of future work.

With regard to the implementation, despite the rapidity of HPSS,
there still is room to accelerate the methods in the hardware level.
Since HPSS is based on element-wise simple arithmetic operations,
exploiting a parallel architecture e.g. GPU may accelerate computa-
tion effectively. These issues regarding implementation would also
be challenges in the future.
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