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Abstract—We propose a novel singing voice enhancement technique
for monaural music audio signals, which is a quite challenging problem.
Many singing voice enhancement techniques have been proposed recently.
However, our approach is based on a quite different idea from these
existing methods. We focused on the fluctuation of a singing voice and con-
sidered to detect it by exploiting two differently resolved spectrograms,
one has rich temporal resolution and poor frequency resolution, while
the other has rich frequency resolution and poor temporal resolution. On
such two spectrograms, the shapes of fluctuating components are quite
different. Based on this idea, we propose a singing voice enhancement
technique that we call two-stage harmonic/percussive sound separation
(HPSS). In this paper, we describe the details of two-stage HPSS
and evaluate the performance of the method. The experimental results
show that SDR, a commonly-used criterion on the task, was improved
by around 4 dB, which is a considerably higher level than existing
methods. In addition, we also evaluated the performance of the method
as a preprocessing for melody estimation in music. The experimental
results show that our singing voice enhancement technique considerably
improved the performance of a simple pitch estimation technique. These
results prove the effectiveness of the proposed method.

Index Terms—singing voice enhancement, multiple resolution, non-
stationarity, fluctuation, pitch detection, harmonic and percussive sound
separation,
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I. INTRODUCTION

THIS paper describes a novel idea to extract singing voices from
polyphonic music signals. In many genres of music, especially

in the popular musics, the lead vocal is the most impressive and
essential part for most listeners, and moreover, it often has much
information that is important in music information retrieval (MIR)
applications. In fact, many MIR studies, such as automatic lyrics
recognition [1], [2], identification of the language of a song [3],
automatic singer identification [4], etc., have used the information
on singing voices. In addition to the importance as a preprocessing
for MIR applications, furthermore, it is also significant in itself in
the way that the technique can be applied as a kind of interactive
music player, i.e., a vocal/nonvocal equalizer, an automatic karaoke
generator [5] and etc.
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Along with the possibilities of the applications, its technical diffi-
culties also make singing voice enhancement an interesting problem.
One of the difficulties comes from the similarity between singing
voice and accompaniments, e.g., a piano, a guitar, and percussions.
For instance, both the spectra of singing voice and harmonic instru-
ments, such as a piano and a guitar, have harmonic structure. Ac-
cordingly, it is difficult for a simple harmonics-extraction technique
to detect only the singing voice in polyphonic music signals. Another
difficulty is that accompanying instruments do not satisfy some
properties of “noise” that have been supposed in conventional signal
processing problems, e.g., whiteness and stationarity, and therefore,
we cannot expect that a classical noise suppression technique work
effectively in singing voice enhancement, because music signals are
not white noise nor stationary.

Because of the many potential applications as well as the technical
interests described above, many methods on singing voice enhance-
ment in music signals, and other related techniques including singing
melody transcription (see section I-A), have been actively studied
recently. In most of the existing methods, an input music signal is
first transformed from time domain to time-frequency domain, then
singing voice is characterized there. Other components such as ac-
companying instruments are suppressed with time-frequency masking
(adaptive Wiener filtering), and finally, the estimated spectrogram of
singing voice is transformed back to time domain again. The most
important point is how to distinguish the singing voice component
from others in a time-frequency representation. Ozerov et al. [6], [7]
focused on the difference of spectral distribution (timbre) of singing
voice and instruments, and modeled them by Gaussian mixture model.
In their method, the GMM was trained in advance in a supervised
way, and tuned adaptively for each input. Some studies utilized the
pitch information of singing voice. In Li and Wang’s method [8],
segments including singing voice were first detected based on spectral
features. Then, at each of the detected singing-voice segments, the
predominant pitch was estimated with using the autocorrelation and
thresholding. Hsu and Jang [9] extended this approach to enable to
capture unvoiced components of the singing voice with utilizing the
spectral envelope information. Another popular stream is based on
Non-negative matrix factorization (NMF) of music spectrogram [10],
where it is assumed that spectrogram of music can be expressed as an
assemblage of a limited number of spectral templates. In Vembu and
Baumann’s method [11], spectral templates obtained by NMF were
classified into singing voice and others with their spectral features
such as MFCC, LFPC, and PLP. Virtanen et al. [12] utilized NMF
with pitch inference. In their method, the pitch of singing voice
was first estimated based on multiple F0 estimation technique [13],
then, the singing voice was roughly removed based on the pitch,
and the residual was used for training accompaniment model with
NMF. Finally, the singing voice was extracted from the mixture
using the derived accompaniment model. In addition to NMF-based
approaches, some of other studies also have focused on low-rankness
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of music spectrogram. Huand et al. [14], in their PCA-based method,
assumed that the spectrogram of accompaniment would lie in lowrank
subspace while singing voice would not, as accompaniments are
rather repetitive while singing voice are less so. Rafii and Pardo [15]
proposed a method “REPET” that suppressed repeating components
in spectrogram, i.e., accompaniments. Raj et al. [16] modeled an
NMF-like generative signal model and applied probabilistic infer-
ences. Some approaches are based on the harmonicity of singing
voice. A method which utilized the harmonicity was proposed by
Lagrange et al. [17], in which a technique of computer vision is
utilized to pick up the harmonically related spectral peaks of the
short-time spectra of singing voice. In summary, majority of the state-
of-the-art singing voice extraction techniques considered to extract
singing voice on a time-frequency domain utilizing some properties
on singing voice such as timbrel features, high-rankness, harmonicity,
etc.

In this paper, we propose another approach for singing voice
enhancement, focusing on the fluctuation of singing voice, such as
vibrato [20]–[22]. In order to capture the fluctuation, we exploit
two spectrogram representations with different time-frequency resolu-
tions, which are unlike the existing methods. Our motivation for using
two different spectrograms comes from our observation that singing
voice has an “intermediate” property between other harmonic instru-
ments and percussive instruments. That is, a singing voice appears
similarly to harmonic instruments on an ordinary spectrogram that has
10–30 [ms] temporal resolution, while it should appear rather similar
to percussions if the analyzing frame of short-time Fourier transform
(STFT) is much longer than the temporal scale of the fluctuation
of singing voice. On the basis of the idea, we roughly define three
types of musical components, fluctuating, sustained, and transient.
Those three types of components can be separated by applying a
simple algorithm twice on differently-resolved spectrograms, which
separates sinusoidal components and impulsive components, which is
called harmonic/percussive sound separation (HPSS) [18], [23]–[25].
In this paper, we describe the details of the discussion above.

According to the experiments we conducted in order to evaluate the
performance of the method compared with those of existing methods,
it is verified that the method extracts singing voice effectively,
indicating around 4 dB Signal to Distortion Ratio (SDR) [6], [26]
improvement, which is a considerably higher level than the other
methods. In addition, we also describe a straightforward combination
of the proposed method and a simple pitch estimation technique,
which is one of the possible applications of our singing voice
enhancement technique. Experimental results on this task also show
the effectiveness of the proposed method.

Note that this paper is the extended version of our previous
conference papers [27], [28]. After the conference, Hsu et al. [29]
have developed more effective singing voice enhancement technique
on the basis of the concept of our previous papers [27], [28] as
well as their pitch estimation techniques, but this paper can be
placed as the complete description on our proposal method “two-
stage HPSS.” Another note is that a similar idea was also mentioned
by FitzGerald [30] around the same time as our previous works [27],
[28].

A. Related Work

In addition to singing voice enhancement, there are many studies
that principally focused on the predominant pitch estimation from the
mixed music signals, which can be used as preprocessing for design-
ing time-frequency mask, or can be an application of singing voice
enhancement. One of the earliest works that addressed the task was
PreFEst [31]. Besides PreFEst, several melody tracking algorithms

have since been proposed, e.g., the methods by Fujihara et al. [32],
Cao et al. [33], Durrieu et al. [34], [35], Salamon and Gómez [36],
and Hsu et al. [29], [37] which is a tandem connection of their
singing pitch estimation technique based on the trend estimation and
a part of our early studies [27], [28]. Some of the other singing pitch
transcription methods, e.g., Ryynänen and Klapuri’s method [13] and
V. Rao and P. Rao’s method [38] are based on multiple F0 estimation,
which is also an important topic in the music signal processing
area [39], [40]. In addition to the studies above, an exchange on
audio melody extraction has been held since 2005 as a part of MIREX
(music information retrieval exchange) [41], and many participants
have submitted their algorithms to the exchange, including those
mentioned above [42].

B. Definition, Notation and Paper Outline

Let x(t) be a real-valued signal, where t ∈ Z, 0 ≤ t < fsT is the
discrete time, fs [Hz] is the sampling rate, and T [s] is the length of
the signal. Let us define x(t) = 0 when t < 0, fsT ≤ t.

Although there are many ways to represent a signal on time-
frequency domain, we simply used a short-time discrete Fourier
transform (STFT), which is one of the simplest method, and is
invertible with ease. X̃ = (X̃n,k)(n,k)∈Ω := STFTl[x(t)] denotes
the complex spectrogram of a signal x(t), where l ∈ N denotes the
frame length (size of analyzing window) of STFT. For convenience,
we assume l is even. Each element X̃n,k ∈ C is defined by discrete
Fourier transform (DFT) as follows,

X̃n,k :=

l−1∑
t=0

x(t+ ns− l/2)g1(t)e−2πjtk/l, (1)

where s is the size of frame shift, which is coordinated with l as
s = l/2 in this paper, g1(t) is a window function, and j is the
imaginary unit. The subscripts n, k ∈ Z, 0 ≤ k < l denote the
indices of time and frequency, respectively. Note, we can restrict
the frequency domain as 0 ≤ k < K := l/2 + 1, because of the
redundancy X̃n,l−k = X̃∗n,k (complex conjugate). In addition, the
values of the spectrogram X̃n,k outside of the domain 0 ≤ n <
N := d2fsT/le+1, is X̃n,k = 0 by definition. Thus we can write the
domain Ω as Ω = {(n, k)|n = 0, 1, . . . , N−1, k = 0, 1, . . . ,K−1},
and regard a complex spectrogram X̃ as an element of CN×K .

The temporal resolution and the frequency resolution of a spec-
trogram are s/fs(= l/2fs) [s] and fs/l [Hz], respectively. Thus the
product of them is always 1/2 regardless of the value of l. This fact
forms the basis of the proposal method which shall be discussed in
section III.

The inverse STFT (STFT−1
l [X̃]) is defined on the basis of the

inverse DFT and the overlap-add (OLA) using a reconstruction
window function g2(t).

Arithmetic operations on spectrograms indicate element-wise op-
erations, e.g., X/2 = (Xn,k/2), X + Y = (Xn,k + Yn,k),
ej∠X̃ = (ej∠X̃n,k ) = (X̃n,k/|X̃n,k|), and

√
X = (

√
Xn,k), etc.,

where (Xn,k) is the abbreviation of (Xn,k)(n,k)∈Ω. For example,
X = |X̃|2 ∈ RN×K is the squared amplitude of the complex
spectrogram X̃ , which is called power spectrogram. When we simply
write ‘spectrogram,’ it means power spectrogram in this paper.

The rest of this paper is organized as follows. In section II,
we briefly introduce HPSS, a fundamental technique of this paper.
In section III, we discuss the fluctuation of singing voice and its
effects on the shapes of spectrogram. Moreover, on the basis of
the discussion, we describe “two-stage HPSS,” which is the main
subject of this paper. In section IV, the performance of the proposed
method is described. In addition, the effectiveness of our method
as a preprocessing for melody estimation is also described. Finally,
section V concludes the paper.
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(a) (b) (c)

Fig. 1. An example of HPSS separation [18]. (a) Spectrogram of an input music signal, excerpted from RWC-MDB-P-2001 No. 14, RWC Music Database [19].
(b) Spectrogram of the separated H component. (c) Spectrogram of the separated P component. Each spectrogram was obtained under the following condition:
frame length was 64 [ms], frame overlap is 32 [ms], and the window function was Hanning window.

Algorithm 1 HPSS updating formulae
1: procedure HPSS(H,P ,m;W , i)
2: a1 ← 2(1 + σ−2

H )
3: a2 ← 2(1 + σ−2

P )
4: for ∀(n, k), i ≤ n < i+ I, 0 ≤ k < K do
5: b1 ← σ−2

H

(√
Hn−1,k +

√
Hn+1,k

)
6: b2 ← σ−2

P

(√
Pn,k−1 +

√
Pn,k+1

)
7: c1 ← 2mn,kWn,k

8: c2 ← 2 (1−mn,k)Wn,k

9: Hn,k ←

(
b1 +

√
b21 + 4a1c1

2a1

)2

10: Pn,k ←

(
b2 +

√
b22 + 4a2c2

2a2

)2

11: mn,k ←
Hn,k

Hn,k + Pn,k
12: end for
13: end procedure

II. HARMONIC/PERCUSSIVE SOUND SEPARATION

In this section, we make a brief introduction of Har-
monic/Percussive Sound Separation (HPSS) [18], [23]–[25], which
is a fundamental technique of our singing voice enhancement tech-
nique. HPSS is an algorithm that separates a signal w(t) into two
classes of components: “harmonic” (sinusoidal) components h(t) and
“percussive” (impulsive) components p(t) as follows,

w(t) ≈ h(t) + p(t). (2)

The method separates a signal on power spectrogram domain on
the basis of two assumptions. The first assumption is that the power
spectrograms of h(t) and p(t), i.e., H = (Hn,k)(n,k)∈Ω ∈ RN×K
and P = (Pn,k)(n,k)∈Ω ∈ RN×K , are “smooth” in time and in
frequency, respectively. The assumption reflects the nature of har-
monic components and percussive components. That is, the harmonic
components are rather “smooth” in time, because they are sustained
for a while, while percussive components are rather “smooth” in
frequency, because they are instantaneous.

Specifically, we defined the smoothness of power spectrogram

Algorithm 2 Whole procedure of Sliding HPSS
1: Preprocessing:
2: Given an input signal w(t)
3: W̃ ← STFTl[w(t)] . complex spectrogram
4: W ← |W̃ |2 . power spectrogram
5: H ←W /2 . initial value of H
6: P ←W /2 . initial value of P
7: ∀(n, k),mn,k ← 0.5 . initial value of m

8: HPSS Updating based on Sliding Analysis:
9: for −I ≤ i ≤ N + I do

10: HPSS (H,P ,m;W , i) . Algorithm 1
11: end for

12: Postprocessing:
13: H̃ ←

√
mW ej∠W̃ . Wiener masking

14: P̃ ←
√

(1−m)W ej∠W̃

15: h(t)← STFT−1
l [H̃] . waveform synthesis

16: p(t)← STFT−1
l [P̃ ]

X ∈ RN×K in time and in frequency as follows,

X is “smooth in time” when Xn,k ≈ Xn−1,k (3)

X is “smooth in frequency” when Xn,k ≈ Xn,k−1 (4)

On the basis of the definition of “smoothness,” we defined criteria to
measure how strongly (3) and (4) are satisfied as follows,

SH(H) :=
1

2σ2
H

N−1∑
n=1

K−1∑
k=0

(Hγ
n,k −H

γ
n−1,k)2, (5)

SP(P ) :=
1

2σ2
P

N−1∑
n=0

K−1∑
k=1

(P γn,k − P
γ
n,k−1)2, (6)

where σH and σP are weighting parameters, which were defined
empirically as 0.3 in [24], and γ is an exponential factor, which
should be 0.5 to make the objective function J that shall be defined
later homogeneous (see Appendix.) It is easily confirmed that the
value of SH(H) should be small if a spectrogram H is “smooth” in
time. Similarly, the value of SP(P ) should be small if a spectrogram
P is “smooth” in frequency.
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The second assumption is that the sum of the separated power
spectrograms, i.e., H + P , should be almost equal to the original
power spectrogram W = |STFTl[w(t)]|2. In order to evaluated the
proximity of H+P to W , we used the generalized Kullbuck-Leibler
divergence DKL(W ‖H + P ), defined by

DKL(X‖Y ) :=

N−1∑
n=0

K−1∑
k=0

Xn,k ln
Xn,k
Yn,k

−Xn,k + Yn,k. (7)

On the basis of these assumptions, HPSS is formulated as an
optimization problem to find the optimal spectrograms H and P
that minimize the following objective function.

minimize J(H,P |W )

:= SH(H) + SP(P ) +DKL(W ‖H + P ) (8)

subject to ∀(n, k), Hn,k ≥ 0, Pn,k ≥ 0.

It is not necessarily easy to optimize J(H,P |W ) directly, since
its partial derivatives w.r.t. Hn,k and Pn,k result in rather com-
plicated forms, but considering an auxiliary parameter m and an
auxiliary function J ′(H,P ,m|W ) ≥ J(H,P |W ) which is based
on Jensen’s inequality, the partial derivatives w.r.t. Hn,k and Pn,k
become simple quadratic equations, and a simple iterative algorithm
(Algorithm 1) that is similar to Expectation-Maximization (EM)
algorithm is obtained. The detailed derivation is available in [24].
Thus we can separate a spectrogram W into two spectrograms H,P .
This is followed by Wiener filtering and inverse STFT to synthesize
audible waveforms h(t) and p(t) (“Postprocessing,” Algorithm 2).
Hereinafter, let us simplify the notation of the whole procedure as
follows,

w(t)
HPSS(l)−−−−→ h(t), p(t). (9)

The computation cost of each update (Algorithm 1) is not very
large, and the solution rapidly converges to near the optimal value
within a small number of iterations. Moreover, by the procedure
shown in Algorithm 2, the HPSS algorithm is executable in real
time. In real time processing, instead of applying updating formula
of Algorithm 1 for several times, a sliding block of size I is used as
shown in line 8–11, Algorithm 2. Practically, setting I around 101

to 102, a solution with a sufficient quality is obtained.
Fig. 1 shows an example of HPSS results. In the input spectrogram

(a), horizontal and vertical structures are clearly observed. The
spectrogram (b) shows the separated H component. It is shown in
the spectrogram that most horizontal components in the original
spectrogram (a) were separated into this component, while the vertical
components were separated into the P components (spectrogram (c).)

III. SINGING VOICE ENHANCEMENT BASED ON TWO-STAGE

HPSS

In this section, we discuss the nature of a singing voice and
consider how to extract it from music audio signals. On the basis of
the discussion, we show the key idea of our singing voice extraction
method, which is the novelty of this paper.

A. Nature of Singing Voice: Intermediate component between ‘Har-
monic’ and ‘Percussive’

As described in the introduction, a singing voice differs from in-
strumental sounds in many ways. For example, its timbrel information
is quite different from many other types of instruments. Another
difference is the depth of the fluctuation. In this paper, we focus
on the fluctuation of singing voice to extract it from mixed music
signals.

Let us consider the cases of a piano before a singing voice.
Due to its mechanical structure, the pitch of piano tones and its

harmonics basically do not change, or only slightly change if any, in
a single note. We can also apply the same discussion to some other
instruments such as a guitar, though it has more frequent exceptions
(e.g., pitch bend) than a piano. As just described, the sound of the
pitched instruments such as pianos and guitars basically do not have
fluctuation, or have slight fluctuation if any.

A singing voice, unlike those instruments, typically has fluctuation
of pitch and amplitude. Since the vocal cord is a human organ which
is not as stable as artifacts, it does not generate sounds as flatly
as the instruments above do, by and large. Besides the mechanical
constraints, many singers fluctuate their singing voice for musical
expressions. This fluctuation is called vibrato, which is another reason
that a singing voice has much fluctuation than the instruments.

Because of the reasons above, we can assume that a singing voice
is “less sinusoidal” than the instruments such as a piano and a
guitar in many cases. At the same time, a singing voice is obviously
“much more sinusoidal” than percussions. To summarize those two
facts, we can regard singing voice as “intermediately sinusoidal,”
as well as “intermediately non-sinusoidal” sound, between sustained
instruments and percussive instruments. In other words, we can
consider a third class “intermediate component,” which is typified
by a singing voice, between “harmonic component” and “percussive
component” in HPSS. We denote those three classes as follows,

H Stationary, sustained, flatly-played instruments, (e.g., piano,
guitar),

V Fluctuated quasi-stationary component (e.g., singing voice),
P Transient, non-stationary instruments, (e.g., percussion).

B. Intermediate Component Extraction using two-stage HPSS

Let’s consider how to extract intermediate component V with
fluctuation from mixed audio signals. Our idea is the utilization of
two different spectrograms that have different temporal-frequency
resolutions. Note that the spectrogram shape of sound depends on
temporal-frequency resolution, which can be controlled by STFT
frame length.

First, let us consider a case in which the frame length of STFT is
10 [ms] (i.e., l = 0.01 × fs). In this case, the frequency resolution
of STFT is 50 Hz, because the product of temporal and frequency
resolution is 1/2. Because of its poor frequency resolution, small
fluctuation of V falls in only a few of frequency bins, while the signal
occupies many temporal bins because its pitch does not change within
such a short duration. Therefore, its appearance on STFT is quite
similar to H (middle row of Fig. 2) in terms of the smoothness. For
this reason, when we apply HPSS to the spectrogram whose frame
length is l1 which is short enough, a signal s(t) is roughly separated
into H+ V and P as follows,

s(t)
HPSS(l1)−−−−−→ h1(t), p1(t), (10)

where

h1(t) ≈ H+ V, (11)

p1(t) ≈ P. (12)

Thus we can remove the P component from the mixed music signals.
Next, we have to decompose h1(t) into a harmonic component H

and a singing voice V . In order to achieve that, let us consider a case
in which the frame length of STFT is 1 [s]. In this case, the frequency
resolution of the spectrogram is 0.5 Hz. In contrast to the previous
case, fluctuation of V is much broader than the frequency resolution,
and it occupies many frequency bins in a single frame. Therefore,
the appearance of V component on the spectrogram is not similar to
H but to P , as shown in the bottom row of Fig. 2. Consequently,
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(1)

TimeF
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H   (piano, guitar, etc.)

(2) (3)

STFT analysis using

short-sized frame

Contour of spectrum

STFT analysis using

long-sized frame

smooth smooth smooth

smooth smooth smooth

V   (singing voice, etc.) P (percussion)

Fig. 2. The dependencies of the appearance of the spectrogram of three types of signals, on each spectrogram. (1) H component is smooth in time, nonsmooth
in frequency, on both short- and long-framed STFT domains. (2) V component is smooth in time, nonsmooth in frequency, on short-framed STFT domain.
However, on long-framed STFT domain, it is nonsmooth in time compared to the width of the time-frequency bins, and smooth in frequency compared to
the height of the time-frequency bins. (Note that these figures are not necessarily the exact illustration of the effects of pitch fluctuation, but intuitive ones.
Another point to note is that, not only the pitch fluctuation (frequency modulation) but also the amplitude fluctuation (amplitude modulation) expand the
bandwidth of the spectrum.) (3) P component is almost always nonsmooth in time, and smooth in frequency, regardless of the frame length.

HPSS
frame = l1 

 s(t)

HPSS
frame = l2 

 p1(t)

 h1(t)

 h2(t)

 p2(t)

P

V

H

Fig. 3. Diagram of two-stage HPSS.

using a sufficiently long analyzing frame l2, we can separate h1(t)
into the following two components by HPSS,

h1(t)
HPSS(l2)−−−−−→ h2(t), p2(t), (13)

where

h2(t) ≈ H, (14)

p2(t) ≈ V. (15)

The obtained p2(t) roughly corresponds to the V component, which
is the target component.

In summary, applying HPSS twice on differently-resolved two
spectrograms separates a music signal into three components, H, V
and P as shown in Fig. 3, and thus obtained p2(t) would roughly be
the singing voice, which we aimed at in this paper.

C. Experimental Example of two-stage HPSS

In order to verify the effectiveness of the singing voice enhance-
ment based on two-stage HPSS, we conducted an experiment on
singing voice enhancement using a professionally-created music au-
dio signal. The music signals we used for experiments were excerpted
from the RWC music database [19]. The data were resampled to 16
kHz and converted into monaural signals by adding both channels of
stereo signals.

Fig. 4 shows a result of two-stage HPSS. The figures show the
spectrograms of a input signal (Fig. 4 (a)) and the V component
extracted by two-stage HPSS (Fig. 4 (b)). We can see in Fig. 4 (b)
that most accompanying sounds are suppressed effectively by the
method, and the singing voice is clearer in spectrogram (b) than that
of the spectrogram (a). The figures show that the method effectively
extract the singing voice from the mixed music audio signal.

IV. PERFORMANCE EVALUATION OF TWO-STAGE HPSS

A. Large Scale Evaluation on Singing Voice Enhancement

1) Experimental Condition: To verify the effectiveness of the two-
stage HPSS, we conducted experiments on the singing voice enhance-
ment using music audio signals. The criteria for the performance
evaluation of singing voice enhancement were the Normalized SDR
(NSDR) and the Global NSDR (GNSDR). NSDR is defined as the
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(a)

(b)
Fig. 4. (a) The constant Q spectrogram of an input signal (10 seconds from
RWC-MDB-P-2001, No. 25 [19]), (b) the result of two-stage HPSS.

improvement of SDR as follows,

NSDR[x̂(t); s(t), x(t)]

= SDR[x̂(t);x(t)]− SDR[s(t);x(t)], (16)

where x̂(t), s(t) and x(t) denote the estimated signal, the input
signal, and the target signal, respectively. SDR [6], [26] (signal to
distortion ratio) is defined by

SDR[x(t); y(t)] = 10 log10

〈x, y〉2

‖x‖2‖y‖2 − 〈x, y〉2 , (17)

where 〈x, y〉 =
∑
t x(t)y(t) and ‖x‖2 = 〈x, x〉. GNSDR is defined

as the averaged NSDR of all the pieces, weighted by wi, the length
of i-th piece [6],

GNSDR =

∑
i wiNSDR[x̂i(t), si(t), xi(t)]∑

i wi
. (18)

Those criteria were also used in some previous works [6], [9], [14],
[15].

For evaluation dataset, we exploited the MIR-1K database [9], [43],
which is comprised of 1000 Chinese songs sung by amateur singers.
The same dataset was used in some of previous works [9], [15]. The
length T of each clip was around 4 to 13 [s]. All the data were
monaural, and the sample rate of them were fs =16 kHz. The vocal
part and the accompaniment part were recorded separately, and we

could mix them in any SNR (signal to noise ratio, i.e., voice to
accompaniment ratio) for experiments. In this study, we mixed the
singing voice and the accompaniment in −10,−5, 0, 5, and 10 dB
for the experiment.

The parameters we used were as follows: The frame shift was half
the length of the frame length, as described in the definition of STFT.
The length of the frames were l1/fs = 8 [ms] (l1 = 128 points) and
l2/fs = 512 [ms] (l2 = 8192 points). Both analyzing window g1(t)
and reconstructing window g2(t) were sine window, g1(t) = g2(t) =
sinπt/l, (0 ≤ t < l). Under this condition, the following equation
is satisfied for any signal x(t), x(t) ≡ STFT−1

l [STFTl[x(t)]] .
The parameters of HPSS were as follows. The size of the sliding
block (≈ number of iteration) I was 30, which is supposed to be
sufficient empirically. The values of σH, σP were 0.3. These values
were identical to those which were described in the original HPSS
paper [24]. After two-stage HPSS, we applied high pass filter to cut
off any components lower than 110 Hz, because vocal components
are less likely to appear in such lower frequencies.

2) Results and Discussion: Fig 5 (a) shows the distribution of
NSDR for each input SNR condition. For most samples in most
SNR conditions, NSDR were larger than 0 dB, i.e., SDR were
improved. The method performed well, especially in −5 dB and
0 dB conditions. Fig 5 (b) compares GNSDR between the proposed
method and some existing methods. The figure shows that the the
proposed method considerably outperformed other methods in any
SNR conditions within −5 to 5 dB.

The method was especially effective when the music signal suf-
ficed the assumptions. That is, if the singing voice had sufficient
fluctuation, and if it was accompanied by very stationary component
and very percussive component, the performance tended to be better.
However, the method was not typically effective in the following
two cases. One was when the singing voice was not fluctuating
sufficiently. When the singer singed flatly, or the singing voice
was sustained for a long while with slight fluctuation, the singing
voice did not satisfy the assumption that “singing voice is quasi-
periodic but a little fluctuating,” and two-stage HPSS did not separate
the component into V components, but into H components. The
other was when accompanying sounds were fluctuating. Typical
instruments were violin, trumpet, etc., which fluctuate to some extent.
Those sounds tended to be separated into V components, because
they satisfy the assumption “quasi-periodic but a little fluctuating.”
To remove those sounds, we have to use other properties of sounds
such as timbre, but this is outside of the scope of this paper.

B. Evaluation as a Preprocessing for Audio Melody Extraction

1) Experimental Condition: As mentioned in the introduction,
singing voice enhancement is related to the pitch estimation of
melody, and either can be used as the other’s preprocessing. In this
section, we conducted an experiment to show the effectiveness of the
two-stage HPSS as a preprocessing for pitch estimation by comparing
the two approaches, one of which is a simple pitch estimation
technique, and the other is the tandem connection of two-stage HPSS
and the pitch estimator. The pitch estimation algorithm we used in
this experiment was a simple probabilistic method based on a spectral
likelihood model and a pitch transition model [28].

The data we used for the experiment were excerpted from
LabROSA dataset [44], which is referred to as sample data of
the audio melody extraction task in MIREX. Nine of 13 pieces
were chosen from the dataset under the condition that the melody
is performed by a singing voice, and other 4 data were omitted
because the melodies are performed by instruments. All the data were
monaural, and the sample rate of them were 16 kHz.
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Fig. 5. (a) Boxplot of NSDR of the proposed method for 1000 songs in MIR-1K dataset. (b) GNSDR comparison with some existing singing voice
enhancement techniques. The perpendicular bars on the plot of our method indicate the weighted standard deviation of NSDR. GNSDR of existing methods
were cited from [9] and [15]. All the GNSDR scores are calculated using 1000 songs in MIR-1K dataset.

The criterion was Raw Pitch Accuracy (RPA), which is defined as
the ratio of correctly estimated segments in melody-active segments.
The correctness of the estimated pitch for each segment is judged by
whether the difference between the estimation and the ground truth
is within a quarter tone (half semitone) or not [45].

2) Result and Discussion: Fig. 6 (a) shows an example of the
result of the pitch estimation, which is preceded by two-stage HPSS.
The pitch sequence was well estimated in melody active segments.
Fig. 6 (b) shows a result of the tandem connection of two-stage
HPSS and the simple pitch estimator. In this condition, pitch was not
correctly estimated sufficiently. These figures show that the result of
the pitch estimation preceded by two-stage HPSS was more accurate
than the result of the pitch estimation alone. Fig. 7 shows the accuracy
ratios for each clip. Compared with the accuracies of the pitch
estimation algorithm without the enhancement, it is observed that
the singing voice enhancement basically improved the accuracy.

C. Large Scale Evaluation on Audio Melody Extraction in MIREX
2010

We submitted the two-stage HPSS followed by the pitch esti-
mation [28] to the Audio Melody Extraction (AME) evaluations,
which was held as a part of Music Information Retrieval EXchange
(MIREX) [41] 2009 and 2010. In MIREX evaluations, several
datasets and several criteria were used, but in this paper, we focus
on the dataset and the criterion that are related to singing voice
enhancement. The dataset was MIR-1K dataset, and the criterion
concerned was RPA. The conditions were similar to those of the
experiments in previous sections.
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Fig. 6. Estimated melody line and ground truth of train06.wav (excerpted
10 [s]) in LabROSA dataset [44]. (a) The result of pitch estimation preceded
by two-stage HPSS. (b) The result of pitch estimation without any prepro-
cessing.

Fig. 8 shows the excerpted results from AME evaluation in MIREX
2010 [46]. It shows that the performance of the proposed method
(TOOS1) is comparatively high, especially in a condition in which
the volume level of singing voice is low to accompaniments (−5
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Fig. 8. Excerpted results from AME evaluation, MIREX 2010 [41]:
Raw Pitch Accuracy (RPA) in +5dB, 0dB, −5dB SNR (voice to
accompaniment ratio) conditions. “TOOS1” is our submission, and “HJ1”
also uses a part of our singing voice enhancement technique [27], [28]
as a preprocessing. This graph shows that the performance of proposed
method is high, especially in low SNR (voice to accompaniment ratio)
conditions, and comparable to those of other methods in high SNR (voice
to accompaniment ratio) conditions. It indirectly shows the effectiveness
of our singing voice enhancement method as a preprocessing for audio
melody extraction.

dB). The figure also shows that the proposed method also performs
comparably to other methods in a condition in which the volume level
of melody is relatively high (+5 dB). The results, although indirectly,
show the effectiveness of our singing voice enhancement method as
a preprocessing for melody pitch estimation.

V. CONCLUSION

In this paper, we described two-stage HPSS, a singing voice
enhancement method in monaural music signals. The method extracts
the singing voice in music signals focusing on its fluctuation. Such
natures of singing voice are exposed on two differently-resolved
spectrograms, one is calculated using a short frame (around 10 [ms]),
and the other is calculated using a long frame (around 500 [ms]).
On the former spectrogram, both H (sustained, such as a piano)
component and V (quasi-stationary, fluctuating, such as a singing
voice) component appear as a “smooth-in-time” components, while
P (transient, such as a percussive instrument) component appears
as a “smooth-in-frequency” component. On the latter spectrogram,
however, the behavior of V component is not similar to that of H, but
is similar to P component, i.e., it appears as a “smooth-in-frequency”
component. Therefore, two-stage application of HPSS on differently-
resolved two spectrograms roughly separates V component from H
and P components.

We evaluated the method in the same framework as some previous
works. According to experimental evaluations, the performance of
the proposed method was considerably higher than those of some
previous works and indicated around 4 dB GNSDR for −5, 0, and
5 dB mixtures. We also applied the method as a preprocessing for
audio melody extraction and evaluated the performance. Although

the subsequent pitch estimation was a very simple algorithm, the
accuracy of the estimation was comparatively high compared with
other pitch estimation methods in low SNR (voice to accompaniment
ratio) conditions, due to the proposed singing voice enhancement
method. This result also proves the effectiveness of the proposed
method.

There are some works remained in the future, such as an inves-
tigation on the robustness of the method for some sound effects
such as reverberations and nonlinear distortions that are sometimes
observed in the real-world musics. Other future works will include
investigations on applications of the method related to music infor-
mation retrieval tasks, and on an effective utilization of the residual
accompanying signals for an automatic karaoke generator.

APPENDIX A
SCALE INVARIANCE (HOMOGENEITY) OF J

In this section, the reason the exponential factor γ in (5) and (6)
should be 0.5 is described. Let (Ĥ, P̂ ) be the solution of the problem
(8), i.e.,

(Ĥ, P̂ ) = argmin
(H,P )

J(H,P ;W ). (19)

Let us suppose a case that λ times spectrogram λW is given in (8).
In that case, not only the input spectrogram, but also the separated
spectrograms should be λ times the magnitude of those of the optimal
spectrograms Ĥ and P̂ , because it is not preferable that the result
is dependent on the volume of the signal. Therefore, the optimal
spectrograms (Ĥ, P̂ ) should also be the optimal to the following
problem. That is, (Ĥ ′, P̂ ′) should be identical to (Ĥ, P̂ ),

(λĤ ′, λP̂ ′) = argmin
H,P

J(H,P |λW ), (20)

⇔ (Ĥ ′, P̂ ′) = argmin
H,P

J(λH, λP |λW ). (21)

Let us consider the dependencies on the scaling λ for each term of
the new objective function J(λH, λP |λW ). It is easily confirmed
that

SH(λH) = λ2γSH(H), (22)

SP(λP ) = λ2γSP(P ), (23)

DKL(λH + λP |λW ) = λDKL(H + P |W ), (24)

and the new objective function can be reduced as follows,

J(λH, λP |λW ) = λJ(H,P |W )

+ (λ2γ − λ){SH(H) + SP(P )}. (25)

The equation indicates that the optimal spectrograms (Ĥ, P̂ ) and
(Ĥ ′, P̂ ′) that minimize J(H,P |W ) and J(λH, λP |λW ) respec-
tively are identical when λ2γ − λ = 0, and otherwise, the optimal
spectrograms are not generally identical. Hence, 2γ = 1 should be
satisfied for scale-invariance.
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